12 research outputs found

    The human milk microbiome and factors influencing its composition and activity

    No full text
    Beyond its nutritional aspects, human milk contains several bioactive compounds, such as microbes, oligosaccharides, and other substances, which are involved in host microbe interactions and have a key role in infant health. New techniques have increased our understanding of milk microbiota composition, but few data on the activity of bioactive compounds and their biological role in infants are available. Whereas the human milk microbiome may be influenced by specific factors including genetics, maternal health and nutrition, mode of delivery, breastfeeding, lactation stage, and geographic location the impact of these factors on the infant microbiome is not yet known. This article gives an overview of milk microbiota composition and activity, including factors influencing microbial composition and their potential biological relevance on infants' future health. (C) 2016 Elsevier Ltd. All rights reserved

    Plant-based diets to manage the risks and complications of chronic kidney disease

    Get PDF
    International audienceTraditional dietary recommendations for patients with chronic kidney disease (CKD) focus on the quantity of nutrients consumed. Without appropriate dietary counselling, these restrictions can result in a low intake of fruits and vegetables and a lack of diversity in the diet. Plant nutrients and plant-based diets could have beneficial effects in patients with CKD: increased fibre intake shifts the gut microbiota towards reduced production of uraemic toxins; plant fats, particularly olive oil, have anti-atherogenic effects; plant anions might mitigate metabolic acidosis and slow CKD progression; and as plant phosphorus has a lower bioavailability than animal phosphorus, plant-based diets might enable better control of hyperphosphataemia. Current evidence suggests that promoting the adoption of plant-based diets has few risks but potential benefits for the primary prevention of CKD, as well as for delaying progression in patients with CKD G3-5. These diets might also help to manage and prevent some of the symptoms and metabolic complications of CKD. We suggest that restriction of plant foods as a strategy to prevent hyperkalaemia or undernutrition should be individualized to avoid depriving patients with CKD of these potential beneficial effects of plant-based diets. However, research is needed to address knowledge gaps, particularly regarding the relevance and extent of diet-induced hyperkalaemia in patients undergoing dialysis

    Plant-based diets to manage the risks and complications of chronic kidney disease

    No full text
    corecore